Tag

Machine Learning

5
May

Explainability – a promising next step in scientific machine learning

With the emergence of deep neural networks, the question has arisen how machine learning models can be not only accurate but also explainable. In this article, you will learn more about explainability and what elements it consists of, and why we need expert knowledge to interpret machine learning results to avoid making the right decisions for the wrong reasons.
14
Apr

Continuous Delivery for Machine Learning

In modern software development, we’ve grown to expect that new software features and enhancements will simply appear incrementally, on any given day. This applies to consumer applications such as mobile, web, and desktop apps, as well as modern enterprise software. We’re no longer tolerant of big, disruptive software deployments. ThoughtWorks has been a pioneer in Continuous Delivery (CD), a set of principles and practices that improve the throughput of delivering software to production in a safe and reliable way.
11
Feb

Tutorial: Explainable Machine Learning with Python and SHAP

Machine learning algorithms can cause the “black box” problem, which means we don’t always know exactly what they are predicting. This may lead to unwanted consequences. In the following tutorial, Natalie Beyer will show you how to use the SHAP (SHapley Additive exPlanations) package in Python to get closer to explainable machine learning results.
28
Jan

Deep Learning: Not only in Python

Although there are powerful and comprehensive machine learning solutions for the JVM with frameworks such as DL4J, it may be necessary to use TensorFlow in practice. This can, for example, be the case if a certain algorithm exists only in a TensorFlow implementation and the effort to port the algorithm into another framework is too high. Although you interact with TensorFlow via a Python API, the underlying engine is written in C++. Using the TensorFlow Java wrapper library, you can train and inference TensorFlow models from the JVM without having to rely on Python. Existing interfaces, data sources, and infrastructures can be integrated with TensorFlow without leaving the JVM.

Behind the Tracks