Blog

ML Conference
The Conference for Machine Learning Innovation
17 - 19 June 2019 | Munich

20
Mar

Top 5 Python Libraries for Machine Learning

It is well-known in the Developer Scene that there is no better machine learning language than Python. One of the reasons why this programming language is so popular is the fact that it has a huge collection of great libraries, that makes the life of a developer a lot easier.
8
Feb

Keynote http://commodity.ai

How can AI be turned into a commodity – a cheap, easily available product, that is used by everyone? Will it even be possible to turn AI into a commodity at all? Dr. Pieter Buteneers (Robovision) adresses these questions in this keynote from ML Conference 2018 in Berlin.
16
Nov

AI as a smart services for everyone

If you cannot or do not want to build an AI project from scratch, you have countless choices of ready-made services. But what can you do if the finished services do not fit the project? Customizable AI and ML models in the cloud, which you can train with your own data, provide a remedy.
12
Nov

Too many ideas, too little data – Overcome the cold start problem

The cold start problem affects both startups as well as established companies. Nonetheless, it also provides a great opportunity to collect new data with your customer’s problem in focus. How do you solve the cold start problem and arrive at a useful data pipeline? We talked to ML Conference speakers Markus Nutz and Thomas Pawlitzki about all this and more.
9
Nov

“Designing proper data collection today improves the quality of ML outcomes tomorrow”

Machine learning may have all sorts of use cases, but forecasting? In honor of the upcoming ML Conference, we talked to Philipp Beer about how data scientists can utilize ML in statistical forecasting. We talk about the advantages and disadvantages of modern vs. classical methods, how can one decide between the two, and where should they turn when they need good predictions for their business KPIs.
29
Oct

Coding deep learning: The absolute minimum an interested developer should know

Deep Learning is all the hype these days, beating another record most every week but writing code for deep learning is not just coding – it really helps if you have a basic understanding of what’s going on beneath. In this session from last year’s ML Conference, Sigrid Keydana offers a quick lesson on deep learning, as well as some tips and tricks for developers who’d like to dip their toes into this topic.

Behind the Tracks