Blog

ML Conference
The Conference for Machine Learning Innovation

6
May

Deep Learning with Java: Introduction to Deeplearning4j

Deep learning is now often considered to be the "holy grail" when it comes to developing intelligent systems. While fully automatic and autonomous machine learning is on the way, current solutions still require the understanding of a software developer or engineer. Deep learning, by contrast, is a sub-discipline of machine learning that promises deep-reaching learning success without human intervention and is oriented towards the function and operation of neural networks in the human brain.
24
Apr

Tutorial: Introduction to the R programming language

You already have some experience with SQL and are wondering how you could find solutions to problems in R? Then this article is just the thing you need! We’ll start with the basic elements of the language - with lots of specific sample code to help. Then we’ll take a look at how we can deal with data (this is where basic SQL skills are helpful, but not required). And last but not least, we'll look at use cases that can typically be solved with R.
8
Feb

Keynote http://commodity.ai

How can AI be turned into a commodity – a cheap, easily available product, that is used by everyone? Will it even be possible to turn AI into a commodity at all? Dr. Pieter Buteneers (Robovision) adresses these questions in this keynote from ML Conference 2018 in Berlin.
16
Nov

AI as a smart services for everyone

If you cannot or do not want to build an AI project from scratch, you have countless choices of ready-made services. But what can you do if the finished services do not fit the project? Customizable AI and ML models in the cloud, which you can train with your own data, provide a remedy.
12
Nov

Too many ideas, too little data – Overcome the cold start problem

The cold start problem affects both startups as well as established companies. Nonetheless, it also provides a great opportunity to collect new data with your customer’s problem in focus. How do you solve the cold start problem and arrive at a useful data pipeline? We talked to ML Conference speakers Markus Nutz and Thomas Pawlitzki about all this and more.
9
Nov

“Designing proper data collection today improves the quality of ML outcomes tomorrow”

Machine learning may have all sorts of use cases, but forecasting? In honor of the upcoming ML Conference, we talked to Philipp Beer about how data scientists can utilize ML in statistical forecasting. We talk about the advantages and disadvantages of modern vs. classical methods, how can one decide between the two, and where should they turn when they need good predictions for their business KPIs.

Behind the Tracks