|Tag

Prompt Engineering for Developers and Software Architects

Generative AI models like GPT-4 are transforming software development by enhancing productivity and decision-making. This guide on prompt engineering helps developers and architects harness the power of large language models. Learn essential techniques for crafting effective prompts, integrating AI into workflows, and improving performance with embeddings. Whether you're using ChatGPT, Copilot, or another LLM, mastering prompt engineering is key to staying competitive in the evolving world of generative AI.

Art and creativity with AI

Thanks to artificial intelligence, there are no limits to your creativity. Programs like Vecentor or Mann-E, developed by Muhammadreza Haghiri, make it easy to create images, vector graphics, and illustrations using AI. In this article, explore how machine learning and generative models like GPT-4 are transforming art, from AI-generated paintings to music and digital art. Stay ahead in the evolving world of AI-driven creativity and discover its impact on the creative process.

Building Ethical AI: A Guide for Developers on Avoiding Bias and Designing Responsible Systems

The intersection of philosophy and artificial intelligence may seem obvious, but there are many different levels to be considered. We talked to Katleen Gabriels, Assistant Professor in Ethics and Philosophy of Technology and author of the 2020 book “Conscientious AI: Machines Learning Morals”. We asked her about the intersection of philosophy and AI, about the ethics of ChatGPT, AGI and the singularity.
Feb 
19, 
2024

OpenAI Embeddings

Embedding vectors (or embeddings) play a central role in the challenges of processing and interpretation of unstructured data such as text, images, or audio files. Embeddings take unstructured data and convert it to structured, no matter how complex, so they can be easily processed by software. OpenAI offers such embeddings, and this article will go over how they work and how they can be used.
Feb 
2, 
2024

Address Matching with NLP in Python

Discover the power of address matching in real estate data management with this comprehensive guide. Learn how to leverage natural language processing (NLP) techniques using Python, including open-source libraries like SpaCy and fuzzywuzzy, to parse, clean, and match addresses. From breaking down data silos to geocoding and point-in-polygon searches, this article provides a step-by-step approach to creating a Source-of-Truth Real Estate Dataset. Whether you're in geospatial analysis, real estate data management, logistics, or compliance, accurate address matching is the key to unlocking valuable insights.
Jun 
9, 
2021

Anomaly Detection as a Service with Metrics Advisor

We humans are usually good at spotting anomalies: often a quick glance at monitoring charts is enough to spot (or, in the best case, predict) a performance problem. A curve rises unnaturally fast, a value falls below a desired minimum or there are fluctuations that cannot be explained rationally. Some of this would be technically detectable by a simple automated if, but it's more fun with Azure Cognitive Services' new Metrics Advisor.
May 
26, 
2021

Tools & Processes for MLOps

Training a machine learning model is getting easier. But building and training the model is also the easy part. The real challenge is getting a machine learning system into production and running it reliably. In the field of software development, we have gained a significant insight in this regard: DevOps is no longer just nice to have, but absolutely necessary. So why not use DevOps tools and processes for machine learning projects as well?

Behind the Tracks

DON'T MISS ANY ML CONFERENCE NEWS!