The Conference for Machine Learning Innovation

Kotlin? For Machine Learning?

Session
Join the ML Revolution!
Until June 2
✓ Save up to 226€
✓ Group discount
✓ Special discount for freelancers
Register Now
Join the ML Revolution!
Until June 2
✓ Save up to 226€
✓ Group discount
✓ Special discount for freelancers
Register Now
Thank you for attending!
Register Now
Thank you for attending!
Register Now
Join the ML Revolution!
Register until conference starts:
✓ 2 in 1 conference special
✓ 10 % Team Discount
Register Now
Join the ML Revolution!
Register until conference starts:
✓ 2 in 1 conference special
✓ 10 % Team Discount
Register Now
Infos
Tuesday, June 28 2022
15:45 - 16:30

Python is *the* language of choice when it comes to Machine Learning. Easy to learn, very readable syntax, and a huge ecosystem. Why would I bother with any other language? And why Kotlin in particular?

In this talk, I’ll give you an overview of how to use Kotlin in every phase of your Machine Learning project. From data cleaning and feature extraction to deploying the model into production and model serving. 
I’ll also introduce you to a number of tools from the Kotlin ecosystem that you can use for your Data Science projects. We’ll talk about Kotlin in Jupyter notebooks, visualizations, and dataframes.

And about whether Kotlin can enable Data Scientists to build models for production, not just PoCs. 

Take me to the full program of Zum vollständigen Programm von Munich Munich .

This Session belongs to the Diese Session gehört zum Programm vom MunichMunich program. Take me to the program of . Hier geht es zum Programm von Singapore Singapore .

This Session belongs to the Diese Session gehört zum Programm vom MunichMunich program. Take me to the program of . Hier geht es zum Programm von Berlin Berlin .

This Session Diese Session belongs to the gehört zum Programm von MunichMunich program. Take me to the current program of . Hier geht es zum aktuellen Programm von Munich Munich , Singapore Singapore or oder Berlin Berlin .

Behind the Tracks