The Conference for Machine Learning Innovation

Delivering Rocketfuel – Pipelines für Deep Learning mit Small Data

Session
Join the ML Revolution!
Until Conference starts:
✓Special discount for Freelancers
✓10% Team Discount
Register Now
Join the ML Revolution!
Until Conference starts:
✓Special discount for Freelancers
✓10% Team Discount
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until March 5:
✓ML Intro Day for free
✓Save up to 500 €
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until March 5:
✓ML Intro Day for free
✓Save up to 500 €
✓10 % Team Discount
Register Now
Infos
Wednesday, December 11 2019
14:15 - 15:00
Room:
Salon 1

Big Data ist der Treibstoff für Deep Learning. Aber was kann ich tun, wenn meine vorhandene Datenmenge zu klein ist, um die Parameter meines Machine-Learning-Modells ausreichend zu trainieren? Data Augmentation ist hier oft die Lösung. Aber wie kann ich Data Augmentation sinnvoll in meine bestehende Deep-Learning-Pipeline einbauen? Warum brauche ich überhaupt eine Pipeline, wenn ich doch Jupyter-Notebooks auf meinem Rechner ausführen kann? In diesem Talk werde ich für Deep-Learning-Anfänger und Machine-Learning-Praktiker Vorteile, Möglichkeiten und Tooling von Pipelines für Deep Learning mit Small Data vorstellen. Dabei wird gezeigt, wie ich Werkzeuge und Prinzipien von Continuous Delivery im Machine-Learning-Umfeld anwenden kann, um mit meinem Machine-Learning-Raumschiff in die Produktion zu starten. 

Vorkenntnisse: 

  • Grundlegende Kenntnisse der Funktionsweise von Machine-Learning-Verfahren 
  • Grundverständnis neuronaler Netzwerke

Lernziele:

  • Schwierigkeiten beim Einsatz von Machine Learning mit Small Data
  • Überblick Data-Augmentation-Verfahren
  • Continuous Integration Prozesse für Deep Learning und Data Augmentation
  • Werkzeuge für Versionierung, Deployment und Monitoring von Machine-Learning-Modellen

Behind the Tracks