The Conference for Machine Learning Innovation

Introduction to Deeplearning4J

Session
Join the ML Revolution!
Register until October 21:
✓ 50% off on all prices
✓ 10% team discount
Register Now
Join the ML Revolution!
Register until October 21:
✓ 50% off on all prices
✓ 10% team discount
Register Now
Join the ML Revolution!
Register until September 23:
✓ PS Classic or C64 Mini for free
✓ Save up to €310
10 % Team Discount
Register Now
Join the ML Revolution!
Register until September 23:
✓ PS Classic or C64 Mini for free
✓ Save up to €310
10 % Team Discount
Register Now
Join the ML Revolution!
Register until the conference starts:
✓ 2-in-1 conference special
✓ 10 % Team Discount
Register Now
Join the ML Revolution!
Register until the conference starts:
✓ 2-in-1 conference special
✓ 10 % Team Discount
Register Now
Infos
Tuesday, June 19 2018
10:00 - 11:00
Room:
Asam 2

The dominant programming language for deep learning is Python. It has a wide variety of frameworks and data scientists love it due to its ecosystem and the workflows it allows. Yet when it comes to actually taking models to production, it is usually met with resistance, as in many enterprise environments Java is still king of the hill – and rightly so. It is the underpinning of big data infrastructure, provides better tooling for production monitoring and scales better to larger teams.
Deeplearning4J is both the name of a deep learning library, but also the umbrella for a set of libraries aimed at the production usage of deep learning. Those libraries cover everything from loading data from a variety of data sources, over defining and training your model on a single node with a CPU or GPU or in a distributed environment on a Cluster, to running it in production, and even importing already trained models from Keras and Tensorflow.
This talk will introduce the Deeplearning4J ecosystem with a brief overview of the most important libraries, including ND4J, DataVec, Deeplearning4J itself, RL4J (reinforcement learning) and Arbiter (hyperparameter optimization). The overview of the ecosystem is followed by a short history of Deeplearning4J and a look into the near future. Finally, a demonstration of how all of them are used together is given. 

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Singapore Singapore .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Berlin Berlin .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Munich Munich .

This Session Diese Session originates from the archive of stammt aus dem Archiv von MunichMunich . Take me to the current program of . Hier geht es zum aktuellen Programm von Singapore Singapore , Berlin Berlin or oder Munich Munich .

Behind the Tracks