The Conference for Machine Learning Innovation

Anomaly Detection in Sales Point Transactions

Session
Join the ML Revolution!
Register until March 11:
✓Save more than 500 € and get ML Intro Day for free
✓ Workshop day for free
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until March 11:
✓Save more than 500 € and get ML Intro Day for free
✓ Workshop day for free
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Infos
Tuesday, June 19 2018
16:00 - 17:00
Room:
Asam 2

This session reviews building a Machine Learning pipeline for detecting anomalies of sales point transactions. It is a tricky job for a company like Superonline, that has over 3000 sales points all over the country, distributed across metropolitan and rural areas. An aim is to detect anomalies in transactions because these can lead us to detect fraudulent transactions. The problem splits into two branches, the first is to detect outlying sales points; the second to detect outlying days of a sales point. Detecting the latter is not as complex as finding outlier sales points. Every sales point has a medial number of transactions and a trend. Building a trend line out of past data and calculating a point estimation using the prediction interval method of statistics help us draw boundaries for each day. When a sales point goes beyond these boundaries we raise a flag. For detecting outlier sales points, we need to group them by their type and location and then calculate quartiles and IQR in these groups. When we compare every sales point to these metrics, we see whether they are outlier or not.

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Online Edition Online Edition .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Munich Munich .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Singapore Singapore .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Berlin Berlin .

This Session Diese Session originates from the archive of stammt aus dem Archiv von MunichMunich . Take me to the current program of . Hier geht es zum aktuellen Programm von Online Edition Online Edition , Munich Munich , Singapore Singapore or oder Berlin Berlin .

Behind the Tracks