The Conference for Machine Learning Innovation

Learning Rank Aggregation Methods

Shorttalk
Join the ML Revolution!
Register until March 11:
✓Save more than 500 € and get ML Intro Day for free
✓ Workshop day for free
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until March 11:
✓Save more than 500 € and get ML Intro Day for free
✓ Workshop day for free
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until December 12:
✓ML Intro Day for free
✓Raspberry Pi or C64 Mini for free
✓Save up to $580
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Infos
Tuesday, June 18 2019
17:00 - 17:30
Room:
Asam 1

Rank aggregation is the process of combining multiple individually ranked lists into one robust ranking (consensus ranking). Recently, the analysis of ranking data has been in significant interest of the machine learning community. Preference aggregation methods are used in computational social choice, multi-agent systems, meta-search engines e.g. rank web pages, and real world collective decisions, for instance election systems.
The focus of the project is to apply the versatile machine learning techniques into mechanisms of rank aggregation methods in order to predict the winner. The primary techniques mastered in this experimental study are learnability of voting rules by investigating machine learning algorithms as supervised classification tasks. With its different configurations, the set of agents (voters) have preferences (votes) over a set of alternatives (candidates). Taking as input the preferences of all agents (so-called profile), the mechanism framework determines the winner or an aggregated preference rank of all alternatives.
Clearly, the rank learning problem has a strong impact on identifying the election’s winner, as determining the winner in Kemeny’s voting scheme is NP-hard (over 4 candidates). The experimental study performs a comparison of several machine learning methods for Borda, Kemeny and Dodgson voting rules with the goal of establishing the best trade-offs between search time and performance.

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Online Edition Online Edition .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Munich Munich .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Singapore Singapore .

This Session originates from the archive of Diese Session stammt aus dem Archiv von MunichMunich . Take me to the program of . Hier geht es zum aktuellen Programm von Berlin Berlin .

This Session Diese Session originates from the archive of stammt aus dem Archiv von MunichMunich . Take me to the current program of . Hier geht es zum aktuellen Programm von Online Edition Online Edition , Munich Munich , Singapore Singapore or oder Berlin Berlin .

Behind the Tracks