The Conference for Machine Learning Innovation

Multi Tasking Deep Learning for Natural Language Processing – Transfer Learning

Session
Join the ML Revolution!
Register until April 30:
✓ Raspberry Pi or C64 Mini for free
✓Save up to 313 €
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until April 30:
✓ Raspberry Pi or C64 Mini for free
✓Save up to 313 €
✓10 % Team Discount
Register Now
Join the ML Revolution!
Register until May 28:
✓ ML Intro Day for free
✓ Raspberry Pi or C64 Mini for free
✓ Save up to $580
Register Now
Join the ML Revolution!
Register until May 28:
✓ ML Intro Day for free
✓ Raspberry Pi or C64 Mini for free
✓ Save up to $580
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Join the ML Revolution!
Register until November 7th:
✓Save up to € 210
✓10% Team Discount
Register Now
Infos
Thursday, September 10 2020
11:15 - 12:00

In this talk, we will cover how to model model different natural language processing. In present NLP tasks like word-based or sentence-based classification, sentence generation and question answering, it is a challenge to train models with little domain information. The key solution is using a pre-trained model and transfer learn. BERT from google and MTDNN from Microsoft have been breaking all set benchmarks in recent years. Understanding how to use transfer learning and multi tasking is key in building a model for the task. In this talk, we will discuss different models like ULMFIT, GPT and BERT, which are popular for transfer learning, and then we will analyze how multi tasking can immensely improve this task and different ways of doing multi tasking.

This Session belongs to the Diese Session gehört zum Programm vom SingaporeSingapore program. Take me to the program of . Hier geht es zum Programm von Munich Munich .

Take me to the full program of Zum vollständigen Programm von Singapore Singapore .

This Session belongs to the Diese Session gehört zum Programm vom SingaporeSingapore program. Take me to the program of . Hier geht es zum Programm von Berlin Berlin .

This Session Diese Session belongs to the gehört zum Programm von SingaporeSingapore program. Take me to the current program of . Hier geht es zum aktuellen Programm von Munich Munich , Singapore Singapore or oder Berlin Berlin .

Behind the Tracks